zcmx.net
当前位置:首页 >> Dy Dx xy x 2 y 2 >>

Dy Dx xy x 2 y 2

请采纳,谢谢

dy/dx=y^2/(xy-x^2),分子分母同时除以x^2 即dy/dx=(y/x)^2 / (y/x -1) 这时令y/x=u, 那么y=ux,所以dy/dx=u+x*du/dx, 代入得到u+x*du/dx= u^2/(u-1), 即x*du/dx=u/(u-1), 所以(1 -1/u)*du=1/x *dx, 两边积分得到u-lnu =lnx+C,(C为常数) ...

结果当然可以写成:|(y-2x)^3=C(y-x)^2,C为待定常数,解曲线为 下面是具体求解过程:

解:∵(3xy+x^2)dy+(y^2+xy)dx=0 ==>2y(3xy+x^2)dy+2y(y^2+xy)dx=0 (等式两端同乘2y) ==>2(3xy^2dy+y^3dx)+2(x^2ydy+xy^2dx)=0 ==>2d(xy^3)+d(x^2y^2)=0 ==>2∫d(xy^3)+∫d(x^2y^2)=0 ==>2xy^3+x^2y^2=C (C是常数) ∴此方程的通解是2xy^3+x^2y^2=C。

解:∵令y=xu,则dy=xdu+udx 代入原方程,化简得 (1/u-1)du+dx/x=0 ==>∫(1/u-1)du+∫dx/x=0 ==>ln│u│-u+ln│x│=ln│C│ (C是积分常数) ==>xue^(-u)=C ==>ye^(-y/x)=C ==>y=Ce^(y/x) ∴原方程的通解是y=Ce^(y/x)。

dy=xydx 1/ydy=xdx ln|y|=x²/2+C ∴dy/dx=xy的通解为y=±e^(x²/2+C) e^(x²/2+C)表示±e的(x²/2+C)次方

如图中:

答: x²+y²-xy=1 对x求导: 2x+2yy'-y-xy'=0 (2y-x)y'=y-2x y'=(y-2x) /(2y-x) 所以: dy / dx =(y-2x) /(2y-x)

对函数两边求导,有: 2x+y+xy'-2yy'=0 2x+y+y'(x-2y)=0 y'=(2x+y)/(2y-x).

=x(x/y)^2十(y/x) 令y/x=t,y=tx dy=xdt十tdx 代入: xdt/dx十t=x/t^2十t dx=t^2dt x=t^3/3十C 回代: x=(y/x)^3/3十C

网站首页 | 网站地图
All rights reserved Powered by www.zcmx.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com